走近国家科技奖之“缺陷”,让材料更智能

走近国家科技奖之“缺陷”,让材料更智能

生活中,“缺陷”在所难免,构成世间万物基础的材料也是如此。

一个理想状态的晶体,原子按照一定次序严格处在格点上,但实际中晶格往往会发生偏离,这种偏离被称为“晶体缺陷”。

西安交通大学前沿院院长任晓兵教授团队用一项历时近十五年的研究成果告诉人们:缺陷,能够让材料更智能。

铁性智能材料

人类社会正在高速进入智能时代,智能材料是实现各种智能化功能的基础和载体,任晓兵团队研究的就是其中的铁性智能材料。铁性智能材料是高技术、国防等重要领域所需的核心材料之一,主要包括三类:对温度、力产生响应的形状记忆合金,对电、温度产生响应的铁电压电材料,对磁产生响应的铁磁材料等。

智能时代对铁性智能材料的性能提出了越来越高的要求,如何大幅提高其性能?任晓兵教授团队从晶体缺陷入手,突破了这一基础性热点难题的研究瓶颈。团队发现,在材料中掺入合适的缺陷,可能会带来戏剧性的性能变化。尽管晶体的晶格产生了不完美,但这种不完美却使得某些功能产生了质的飞跃。

科研中的“缺陷美”

早在20年前研究金属形状记忆合金时,任晓兵教授就发现金属橡皮弹性效应的背后是一种新奇的物理机制在起作用,这恰好就是由于缺陷引起的。他预测,这个原理的应用范围应不仅是金属,也许会在另一类材料中出现类似的效应,但是会有新特点。2002年,任晓兵教授回到母校西安交通大学担任“长江学者”讲座教授,就开始将这一原理应用在铁电压电材料研究。

随着研究的不断深入,团队提出了调控铁电材料性能的点缺陷短程有序对称性原理,阐明了60年来铁电领域的难题——铁电材料时效现象的微观机理。团队发现了铁电材料中40倍于传统电致应变的巨大可回复电致应变效应,为大幅度提高铁电材料的电致应变性能提供了新思路。Nature Materials有文章这样评价:“这种材料在使用50年后,最近才发现这一可能导致其全新应用的奇异铁电和压电应变性能。”

“压电陶瓷之王”锆钛酸铅陶瓷是在全世界使用了长达半个世纪的核心压电材料,压电性能优异,但是对人体和环境十分有害。能否找到一种与之相媲美的无铅压电材料?团队通过缺陷调控,使得无铅材料达到有铅材料的高性能,为高性能无铅压电材料的开发开辟了新方向。

在形状记忆合金领域,微型器件越做越小,从微米逐渐往纳米尺度缩小,但材料赖以生存的相变到一定尺寸时就没有了,功能性随之出现很大问题。研发微纳米尺度下同样具有超弹性的合金成为急迫需求。团队借助分子动力学原理,利用晶体的面缺陷调控材料性能,使之在纳米尺度下依然实现了超弹性。在此基础上,团队阐明了制约铁电存储器应用的膜厚效应和形状记忆合金领域长达半世纪的难题,还提出了“纳米弹簧”新概念,为开发高性能微纳器件提供了新思路。

基础研究需要独特的思维和视角

“基础研究非常考验思维和视角”,任晓兵教授说,“很多东西以前在乱码里,只要找到头绪,就可以将其展现出来,我们的优势就是跨学科。”这三类铁性智能材料很多时候是物理学家、金属学家、陶瓷学家分头在研究,而这个由来自前沿院、材料学院、理学院和电气学院师生组成的跨学科团队从一开始就意识到这三类材料在物理上是高度平行的,并在其中平行性、类似性的空白地带挖掘到隐藏的机遇和价值。

该项目20篇核心论文发表在Nature Materials、Physical Review Letters、Nano Letters等国际一流期刊,被来自57个国家836个研究机构的作者在268种期刊广泛引用,其中SCI他引1710余次,8篇代表论文SCI他引1370余次;做国际会议大会报告及邀请报告30次,产生了重要的国际学术影响。2篇代表性论文入选ESI数据库高被引论文,其中1篇入选“中国百篇最具影响国际学术论文”。研究成果4次被Nature Materials、NPG Asia Materials等专题正面评论,并被编入两部美国科学家编写的学术专著;获得了美国工程院院士、英国皇家学会院士、欧洲科学院院士、IEEE Fellow等该领域国际权威学者和同行的高度评价。部分研究成果获得教育部自然科学一等奖。团队中的青年师生也在项目的锤炼下不断成长:一名青年教师入选教育部长江学者,两名教师获得国家基金委优秀青年基金资助,一篇博士论文获得全国百优博士论文提名。

“这只是新的开始,我相信今后还会有更多有意思的发现。”对于未来,任晓兵教授充满信心。

郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如有侵权行为,请第一时间联系我们修改或删除。